Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Infect Dis ; 2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2304528

ABSTRACT

Ethanol (EtOH) effectively inactivates enveloped viruses in vitro, including influenza and SARS-CoV-2. Inhaled EtOH vapor may inhibit viral infection in mammalian respiratory tracts, but this has not yet been demonstrated. Here we report that unexpectedly low EtOH concentrations in solution, approximately 20% (v/v), rapidly inactivate influenza A virus (IAV) at mammalian body temperature (37°C) and are not toxic to lung epithelial cells upon apical exposure. Furthermore, brief exposure to 20% (v/v) EtOH decreases production of infectious progeny viruses in IAV-infected cells. Using an EtOH vapor exposure system that is expected to expose murine respiratory tracts to 20% (v/v) EtOH solution by gas-liquid equilibrium at 37°C, we demonstrate that brief EtOH vapor inhalation twice a day protects mice from lethal IAV respiratory infection by reducing viruses in the lungs without harmful side effects. Our data suggest that EtOH vapor inhalation may provide a versatile therapy against various respiratory viral infectious diseases.

2.
Infect Dis Ther ; 11(1): 595-605, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1514083

ABSTRACT

INTRODUCTION: Inhaled therapeutics may act to directly target and attenuate lung inflammation due to COVID-19. An inhalation form of a novel biologic drug, AMP5A, is being developed as an immunomodulatory agent to treat dysregulated immune responses and is being studied in hospitalized patients to treat respiratory complications due to COVID-19. METHODS: A randomized, controlled, phase I trial was conducted to evaluate hospitalized adults with respiratory distress secondary to COVID-19. Patients received the standard care (SOC) for COVID-19, including respiratory therapy, corticosteroids, and antiviral therapies such as remdesivir. Patients were randomized 1:1 to inhalation treatment with AMP5A as an adjunct to SOC or to SOC alone (control). AMP5A was administered via inhalation daily for 5 days via hand-held nebulizer, non-invasive ventilator, or mechanical ventilation. Safety and clinical efficacy endpoints were evaluated. RESULTS: Forty subjects were enrolled and randomized (n = 19 AMP5A, n = 21 control). Remdesivir was used in fewer AMP5A subjects (26%) than control (52%), and dexamethasone was administered for most subjects (84% AMP5A, 71% control). The study met its primary endpoint with no AMP5A treatment-related adverse events (AEs), and the incidence and severity of AEs were comparable between groups: 18 AEs for control (8 mild, 1 moderate, 9 severe) and 19 AEs for AMP5A (7 mild, 7 moderate, 5 severe). Notably, subjects treated with AMP5A had fewer deaths (5% vs. 24%), shorter hospital stay (8 days vs. 12 days), fewer ICU admissions (21% vs. 33%), and a greater proportion with improved clinical outcomes than control. CONCLUSION: The phase I clinical results indicate inhaled AMP5A is safe, is well tolerated, and could lead to fewer patients experiencing deterioration or death. Based on the treatment effect (i.e., reduced mortality), a phase II trial has been initiated. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT04606784.

3.
Pharmaceutics ; 13(2)2021 Feb 07.
Article in English | MEDLINE | ID: covidwho-1069855

ABSTRACT

The number of publications studying the therapeutic use of stem cells has steadily increased since 2000. Compared to other applications, there has been little interest in the evaluation of mesenchymal stem cells (MSCs) and MSC-derived products (mostly extracellular vesicles) for the treatment of respiratory diseases. Due to the lack of efficient treatments for acute respiratory distress syndrome caused by infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the action of MSCs has also been studied. This review describes mode of action and use of MSCs and MSC-derived products in the treatment of lung diseases including the respective advantages and limitations of the products. Further, issues related to standardized production are addressed. Administration by inhalation of MSCs, compared to intravenous injection, could decrease cell damage by shear stress, eliminate the barrier to reach target cells in the alveoli, prevent thrombus formation in the pulmonary vasculature and retention in filter for extracorporeal membrane oxygenation. There is more feasible to deliver extracellular vesicles than MSCs with inhalers, offering the advantage of non-invasive and repeated administration by the patient. Major obstacles for comparison of results are heterogeneity of the products, differences in the treatment protocols and small study cohorts.

SELECTION OF CITATIONS
SEARCH DETAIL